Properties for a Certain Family of Knot Diagrams
نویسندگان
چکیده
In this note, we consider arithmetic properties of the function K(n) = (2n)!(2n + 2)! (n− 1)!(n + 1)!2(n + 2)! which counts the number of two–legged knot diagrams with one self– intersection and n − 1 tangencies. This function recently arose in a paper by Jacobsen and Zinn–Justin on the enumeration of knots via a transfer matrix approach. Using elementary number theoretic techniques, we prove various results concerning K(n), including the following: • K(n) is never odd, • K(n) is never a quadratic residue modulo 3, and • K(n) is never a quadratic residue modulo 5.
منابع مشابه
Subpullbacks and Po-flatness Properties of S-posets
In (Golchin A. and Rezaei P., Subpullbacks and flatness properties of S-posets. Comm. Algebra. 37: 1995-2007 (2009)) study was initiated of flatness properties of right -posets over a pomonoid that can be described by surjectivity of corresponding to certain (sub)pullback diagrams and new properties such as and were discovered. In this article first of all we describe po-flatness propertie...
متن کاملInvariants of Knot Diagrams
We construct a new order 1 invariant for knot diagrams. We use it to determine the minimal number of Reidemeister moves needed to pass between certain pairs of knot diagrams.
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملGrid Diagrams for Lens Spaces and Combinatorial Knot Floer Homology
Similar to knots in S, any knot in a lens space has a grid diagram from which one can combinatorially compute all of its knot Floer homology invariants. We give an explicit description of the generators, differentials, and rational Maslov and Alexander gradings in terms of combinatorial data on the grid diagram. Motivated by existing results for the Floer homology of knots in S and the similari...
متن کاملThe Knot Group and The Jones Polynomial
In this thesis, basic knot theory is introduced, along with concepts from topology, algebra and algebraic topology, as they relate to knot theory. In the first chapter, basic definitions concerning knots are presented. In the second chapter, the fundamental group is applied as a method of distinguishing knots. In particular the torus knots are classified using the fundamental group, and a gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 77 شماره
صفحات -
تاریخ انتشار 2005